Infinite Parameters
A technical manual for infinite parameters in InfiniteOpt
. See the respective guide for more information.
Definition
Macro
InfiniteOpt.@infinite_parameter
— Macro@infinite_parameter(model::InfiniteModel, kwargs...)
Add anonymous infinite parameter to the model model
described by the keyword arguments kw_args
and returns the parameter reference.
@infinite_parameter(model::InfiniteModel, expr, kwargs...)
Add an infinite parameter to the model model
described by the expression expr
, and the keyword arguments kw_args
. (Note that in the following the symbol in
can be used instead of ∈
) The expression expr
can be of the form:
paramexpr
creating parameters described byparamexpr
.paramexpr ∈ [lb, ub]
creating parameters described byparamexpr
characterized by a continuous interval domain with lower boundlb
and upper boundub
.paramexpr ~ dist
creating parameters described byparamexpr
characterized by theDistributions.jl
distribution objectdist
.paramexpr ∈ domain
creating parameters described byparamexpr
characterized by theAbstractInfiniteDomain
objectdomain
.
The expression paramexpr
can be of the form:
paramname
creating a scalar parameter of nameparamname
paramname[...]
or[...]
creating a container of parameters
The recognized keyword arguments in kwargs
are the following:
base_name
: Sets the name prefix used to generate parameter names. It corresponds to the parameter name for scalar parameter, otherwise, the parameter names are set tobase_name[...]
for each index...
of the axesaxes
.domain
: TheInfiniteDomain
characterizing the parameters see subtypes ofAbstractInfiniteDomain
.distribution
: Sets theDistributions.jl
distribution object that characterizes the parameters (specified instead of a domain).supports
: Sets the support points for the parameters.num_supports
: Specifies the number of supports to be automatically generated. Note thatsupports
takes precedence. Defaults to 0.derivative_method
: Specify the numerical method to evaluate derivatives that are taken with respect to the parameter.sig_digits
: Specifies the number of significant digits that should be used in automatic support generation. Defaults toDefaultSigDigits
.independent
: Specifies if the each parameter is independent from each other or not. Defaults to false.container
: Specify the container type. Defaults toAuto
Examples
julia> @infinite_parameter(m, x in [0, 1])
x
julia> @infinite_parameter(m, y[i = 1:2] ~ MvNormal(ones(2)), num_supports = 10)
2-element Array{GeneralVariableRef,1}:
y[1]
y[2]
julia> z = @infinite_parameter(m, [["a", "b"]], distribution = Normal(),
independent = true)
1-dimensional DenseAxisArray{GeneralVariableRef,1,...} with index sets:
Dimension 1, ["a", "b"]
And data, a 2-element Array{GeneralVariableRef,1}:
noname[a]
noname[b]
Independent Parameters
InfiniteOpt.InfOptParameter
— TypeInfOptParameter <: JuMP.AbstractVariable
An abstract type for all parameters used in InfiniteOpt.
InfiniteOpt.ScalarParameter
— TypeScalarParameter <: InfOptParameter
An abstract type for scalar parameters used in InfiniteOpt.
InfiniteOpt.IndependentParameter
— TypeIndependentParameter{T <: InfiniteScalarDomain,
M <: AbstractDerivativeMethod,
I <: AbstractGenerativeInfo} <: ScalarParameter
A DataType
for storing independent scalar infinite parameters.
Fields
domain::T
: The infinite domain that characterizes the parameter.supports::DataStructures.SortedDict{Float64, Set{DataType}}
: The support points used to discretize the parameter and their associated type labels stored asDataTypes
s which should be a subtype ofAbstractSupportLabel
.sig_digits::Int
: The number of significant digits used to round the support values.derivative_method::M
: The derivative evaluation method used for derivatives that are conducted with respect to this parameter.gnerative_supp_info::I
: The info associated with any generative supports that will need to be generated for measures and/or derivatives based on existing supports.
InfiniteOpt.build_parameter
— Methodbuild_parameter(
_error::Function, domain::InfiniteScalarDomain;
[num_supports::Int = 0,
supports::Union{Real, Vector{<:Real}} = Float64[],
sig_digits::Int = DefaultSigDigits,
derivative_method::AbstractDerivativeMethod = DefaultDerivativeMethod]
)::IndependentParameter
Returns a IndependentParameter
given the appropriate information. This is analagous to JuMP.build_variable
. Errors if supports violate the bounds associated with domain
. This is meant to primarily serve as a helper method for @infinite_parameter
. Here derivative_method
specifies the numerical evalution method that will be applied to derivatives that are taken with respect to this infinite parameter.
Example
julia> param = build_parameter(error, IntervalDomain(0, 3), supports = Vector(0:3));
InfiniteOpt.add_parameter
— Methodadd_parameter(model::InfiniteModel, p::IndependentParameter,
[name::String = ""])::GeneralVariableRef
Returns a GeneralVariableRef
associated with the parameter p
that is added to model
. This adds a parameter to the model in a manner similar to JuMP.add_variable
. This is used to add parameters with the use of @infinite_parameter
. build_parameter
should be used to construct p
.
Example
julia> p = build_parameter(error, IntervalDomain(0, 3), supports = Vector(0:3));
julia> param_ref = add_parameter(model, p, "name")
name
InfiniteOpt.ScalarParameterData
— TypeScalarParameterData{P <: ScalarParameter} <: AbstractDataObject
A mutable DataType
for storing ScalarParameter
s and their data.
Fields
parameter::P
: The scalar parameter.object_num::Int
: The location of the correspondingObjectIndex
inInfiniteModel.param_object_indices
(given byInfiniteModel.last_object_num
).parameter_num::Int
: Given byInfiniteModel.last_param_num
(updated when prior parameters are deleted)name::String
: The name used for printing.parameter_func_indices::Vector{ParameterFunctionIndex}
: Indices of dependent infinite parameter functions.infinite_var_indices::Vector{InfiniteVariableIndex}
: Indices of dependent infinite variables.derivative_indices::Vector{DerivativeIndex}
: Indices of dependent derivatives.measure_indices::Vector{MeasureIndex}
: Indices of dependent measures.constraint_indices::Vector{InfOptConstraintIndex}
: Indices of dependent constraints.in_objective::Bool
: Is this used in objective? This should be true only for finite parameters.generative_measures::Vector{MeasureIndex}
: Indices of measures that useparameter.generative_supp_info
.has_internal_supports::Bool
: Does this parameter have internal supports?has_generative_supports::Bool
: Have any generative supports been added?has_deriv_constrs::Bool
: Have any derivative evaluation constraints been added to the infinite model associated with this parameter?
InfiniteOpt.IndependentParameterIndex
— TypeIndependentParameterIndex <: ObjectIndex
A DataType
for storing the index of a IndependentParameter
.
Fields
value::Int64
: The index value.
InfiniteOpt.IndependentParameterRef
— TypeIndependentParameterRef <: DispatchVariableRef
A DataType
for independent infinite parameters references that parameterize infinite variables.
Fields
model::InfiniteModel
: Infinite model.index::IndependentParameterIndex
: Index of the parameter in model.
Dependent Parameters
InfiniteOpt.DependentParameters
— TypeDependentParameters{T <: InfiniteArrayDomain,
M <: NonGenerativeDerivativeMethod} <: InfOptParameter
A DataType
for storing a collection of dependent infinite parameters.
Fields
domain::T
: The infinite domain that characterizes the parameters.supports::Dict{Vector{Float64}, Set{DataType}}
: Support dictionary where keys are supports and the values are the set of labels for each support.sig_digits::Int
: The number of significant digits used to round the support values.derivative_methods::Vector{M}
: The derivative evaluation methods associated with each parameter.
InfiniteOpt.add_parameters
— Functionadd_parameters(model::InfiniteModel,
params::DependentParameters,
names::Vector{String}
)::Vector{GeneralVariableRef}
Add params
to model
and return an appropriate container of the dependent infinite parameter references. This is intended as an internal method for use with @infinite_parameter
. However, if desired users can use this to add a DependentParameters
object to model
. Here, names
denote the name of each parameter.
Example
julia> using Distributions
julia> dist = MvNormal(ones(3)); # 3 dimensional
julia> domain = MultiDistributionDomain(dist); # 3 dimensional
julia> params = DependentParameters(domain, Dict{Vector{Float64}, Set{DatatType}}(), 10);
julia> prefs = add_parameters(model, params, ["par1", "par2", "par3"])
3-element Array{GeneralVariableRef,1}:
par1
par2
par3
InfiniteOpt.MultiParameterData
— TypeMultiParameterData{P <: DependentParameters} <: AbstractDataObject
A mutable DataType
for storing DependentParameters
and their data.
Fields
parameters::P
: The parameter collection.object_num::Int
: The location of the correspondingObjectIndex
inInfiniteModel.param_object_indices
(given byInfiniteModel.last_object_num
).parameter_nums::UnitRange{Int}
: Given byInfiniteModel.last_param_num
(updated when prior parameters are deleted)names::Vector{String}
: The names used for printing each parameter.parameter_func_indices::Vector{ParameterFunctionIndex}
: Indices of dependent infinite parameter functions.infinite_var_indices::Vector{InfiniteVariableIndex}
: Indices of dependent infinite variables.derivative_indices::Vector{Vector{DerivativeIndex}}
: Indices of dependent derivatives.measure_indices::Vector{Vector{MeasureIndex}}
: Indices of dependent measures.constraint_indices::Vector{Vector{InfOptConstraintIndex}}
: Indices of dependent constraints.has_internal_supports::Bool
: Does this parameter have internal supports?has_deriv_constrs::Bool
: Have any derivative evaluation constraints been added to the infinite model associated with this parameter?
InfiniteOpt.DependentParametersIndex
— TypeDependentParametersIndex <: ObjectIndex
A DataType
for storing the index of a DependentParameters
object.
Fields
value::Int64
: The index value.
InfiniteOpt.DependentParameterIndex
— TypeDependentParameterIndex <: AbstractInfOptIndex
A DataType
for storing the index of an indiviudal parameter in a DependentParameters
object.
Fields
object_index::DependentParametersIndex
: The index of the parameter collection.param_index::Int
: The index of the individual parameter in the above object.
InfiniteOpt.DependentParameterRef
— TypeDependentParameterRef <: DispatchVariableRef
A DataType
for dependent infinite parameter references that parameterize infinite variables.
Fields
model::InfiniteModel
: Infinite model.index::DependentParameterIndex
: Index of the dependent parameter.
Queries
General
InfiniteOpt.parameter_by_name
— Methodparameter_by_name(model::InfiniteModel,
name::String)::Union{GeneralVariableRef, Nothing}
Return the parameter reference assoociated with a parameter name. Errors if multiple parameters have the same name. Returns nothing if no such name exists.
Example
julia> parameter_by_name(model, "t")
t
InfiniteOpt.num_parameters
— Functionnum_parameters(model::InfiniteModel,
[type::Type{InfOptParameter} = InfOptParameter])::Int
Return the number of InfiniteOpt
parameters assigned to model
. By default, the total number of infinite and finite parameters is returned. The amount of a particular type is obtained by specifying the concrete parameter type of InfOptParameter
via type
. Type options include:
InfOptParameter
: all parametersScalarParameter
: all scalar parametersInfiniteParameter
: all infinite parametersFiniteParameter
: all finite parametersIndependentParameter
: all independent infinite parametersDependentParameters
: all dependent infinite parameters
Example
julia> num_parameters(model)
3
julia> num_parameters(model, IndependentParameter)
2
InfiniteOpt.all_parameters
— Functionall_parameters(model::InfiniteModel,
type::Type{InfOptParameter} = InfOptParameter
)::Vector{GeneralVariableRef}
Return a list of all the InfiniteOpt
parameters assigned to model
. By default, all of the infinite and finite parameters is returned. The search is reduced to a particular type is obtained by specifying the concrete parameter type of InfOptParameter
via type
. Type options include:
InfOptParameter
: all parametersScalarParameter
: all scalar parametersInfiniteParameter
: all infinite parametersFiniteParameter
: all finite parametersIndependentParameter
: all independent infinite parametersDependentParameters
: all dependent infinite parameters
Examples
julia> all_parameters(model)
4-element Array{GeneralVariableRef,1}:
t
x[1]
x[2]
alpha
julia> all_parameters(model, FiniteParameter)
1-element Array{GeneralVariableRef,1}:
alpha
Independent Parameters
JuMP.name
— MethodJuMP.name(pref::Union{IndependentParameterRef, FiniteParameterRef})::String
Extend the JuMP.name
function to accomodate infinite parameters. Returns the name string associated with pref
.
Example
julia> name(t)
"t"
InfiniteOpt.infinite_domain
— Methodinfinite_domain(pref::IndependentParameterRef)::InfiniteScalarDomain
Return the infinite domain associated with pref
.
Example
julia> infinite_domain(t)
[0, 1]
JuMP.has_lower_bound
— MethodJuMP.has_lower_bound(pref::IndependentParameterRef)::Bool
Extend the JuMP.has_lower_bound
function to accomodate infinite parameters. Return true if the domain associated with pref
has a defined lower bound or if a lower bound can be found. Extensions with user-defined infinite domain types should extend JuMP.has_lower_bound(domain::NewType)
.
Example
julia> has_lower_bound(t)
true
JuMP.lower_bound
— MethodJuMP.lower_bound(pref::IndependentParameterRef)::Real
Extend the JuMP.lower_bound
function to accomodate infinite parameters. Returns the lower bound associated with the infinite domain. Errors if such a bound is not well-defined.
Example
julia> lower_bound(t)
0.0
JuMP.has_upper_bound
— MethodJuMP.has_upper_bound(pref::IndependentParameterRef)::Bool
Extend the JuMP.has_upper_bound
function to accomodate infinite parameters. Return true if the domain associated with pref
has a defined upper bound or if a upper bound can be found. Extensions with user-defined domains should extend JuMP.has_upper_bound(domain::NewType)
.
Example
julia> has_upper_bound(t)
true
JuMP.upper_bound
— MethodJuMP.upper_bound(pref::IndependentParameterRef)::Real
Extend the JuMP.upper_bound
function to accomodate infinite parameters. Returns the upper bound associated with the infinite domain. Errors if such a bound is not well-defined. Extensions with user-defined domain types should extend JuMP.has_upper_bound(domain::NewType)
and JuMP.upper_bound(domain::NewType)
if appropriate.
Example
julia> upper_bound(t)
1.0
InfiniteOpt.has_supports
— Methodhas_supports(pref::IndependentParameterRef)::Bool
Return true if pref
has supports or false otherwise.
Example
julia> has_supports(t)
true
InfiniteOpt.num_supports
— Methodnum_supports(pref::IndependentParameterRef;
[label::Type{<:AbstractSupportLabel} = PublicLabel])::Int
Return the number of support points associated with pref
. By default, only the number of public supports are counted. The full amount can be determined by setting label = All
. Moreover, the amount of labels that satisfy label
is obtained using an AbstractSupportLabel
.
Example
julia> num_supports(t)
2
InfiniteOpt.supports
— Methodsupports(pref::IndependentParameterRef;
[label::Type{<:AbstractSupportLabel} = PublicLabel])::Vector{Float64}
Return the support points associated with pref
. Errors if there are no supports. Users can query just support points generated by a certain method using the keyword argument label
. By default, the function returns all public support points regardless of the associated label. The full collection is given by setting label = All
. Moreover, the amount of labels that satisfy label
is obtained using an AbstractSupportLabel
.
Example
julia> supports(t)
2-element Array{Float64,1}:
0.0
1.0
InfiniteOpt.has_internal_supports
— Methodhas_internal_supports(pref::Union{IndependentParameterRef, DependentParameterRef})::Bool
Indicate if pref
has internal supports that will be hidden from the user by default.
InfiniteOpt.significant_digits
— Methodsignificant_digits(pref::IndependentParameterRef)::Int
Return the number of significant digits enforced on the supports of pref
.
Example
julia> significant_digits(t)
12
InfiniteOpt.derivative_method
— Methodderivative_method(pref::IndependentParameterRef)::AbstractDerivativeMethod
Returns the numerical derivative evaluation method employed with pref
when it is used as an operator parameter in a derivative.
Example
julia> derivative_method(pref)
FiniteDifference(Backward, true)
InfiniteOpt.is_used
— Methodis_used(pref::Union{IndependentParameterRef, FiniteParameterRef})::Bool
Return true if pref
is used in the model or false otherwise.
Example
julia> is_used(t)
true
InfiniteOpt.used_by_infinite_variable
— Methodused_by_infinite_variable(pref::IndependentParameterRef)::Bool
Return true if pref
is used by an infinite variable or false otherwise.
Example
julia> used_by_infinite_variable(t)
true
InfiniteOpt.used_by_parameter_function
— Methodused_by_parameter_function(pref::IndependentParameterRef)::Bool
Return true if pref
is used by an infinite parameter function or false otherwise.
Example
julia> used_by_parameter_function(t)
false
InfiniteOpt.used_by_measure
— Methodused_by_measure(pref::Union{IndependentParameterRef, FiniteParameterRef})::Bool
Return true if pref
is used by a measure or false otherwise.
Example
julia> used_by_measure(t)
false
InfiniteOpt.used_by_constraint
— Methodused_by_constraint(pref::Union{IndependentParameterRef, FiniteParameterRef})::Bool
Return true if pref
is used by a constraint or false otherwise.
Example
julia> used_by_constraint(t)
true
Dependent Parameters
JuMP.name
— MethodJuMP.name(pref::DependentParameterRef)::String
Extend JuMP.name
to return the names of infinite dependent parameters.
Example
julia> name(pref)
"par_name"
InfiniteOpt.infinite_domain
— Methodinfinite_domain(pref::DependentParameterRef)::InfiniteScalarDomain
Return the infinite domain associated with the particular infinite dependent parameter pref
if valid. Errors if the underlying DependentParameters
object does not use a CollectionDomain
.
Example
julia> infinite_domain(x[1])
[-1, 1]
InfiniteOpt.infinite_domain
— Methodinfinite_domain(prefs::AbstractArray{<:DependentParameterRef})::InfiniteArrayDomain
Return the infinite domain associated with the container of infinite dependent parameters prefs
. Errors if the container prefs
is incomplete.
Example
julia> infinite_domain(x)
ZeroMeanDiagNormal(
dim: 2
μ: [0.0, 0.0]
Σ: [1.0 0.0; 0.0 1.0]
)
JuMP.has_lower_bound
— MethodJuMP.has_lower_bound(pref::DependentParameterRef)::Bool
Extend the JuMP.has_lower_bound
function to accomodate a single dependent infinite parameter. Return true if the domain associated with pref
has a defined lower bound or if a lower bound can be found. Extensions with user-defined scalar infinite domain types should extend JuMP.has_lower_bound(domain::NewType)
.
Example
julia> has_lower_bound(x[1])
true
JuMP.lower_bound
— MethodJuMP.lower_bound(pref::DependentParameterRef)::Number
Extend the JuMP.lower_bound
function to accomodate a single dependent infinite parameter. Returns the lower bound associated with the infinite domain. Errors if such a bound is not well-defined.
Example
julia> lower_bound(x[1])
0.0
JuMP.has_upper_bound
— MethodJuMP.has_upper_bound(pref::DependentParameterRef)::Bool
Extend the JuMP.has_upper_bound
function to accomodate a single dependent infinite parameter. Return true if the domain associated with pref
has a defined upper bound or if a upper bound can be found. Extensions with user-defined scalar infinite domain types should extend JuMP.has_upper_bound(domain::NewType)
.
Example
julia> has_upper_bound(x[1])
true
JuMP.upper_bound
— MethodJuMP.upper_bound(pref::DependentParameterRef)::Number
Extend the JuMP.upper_bound
function to accomodate a single dependent infinite parameter. Returns the upper bound associated with the infinite domain. Errors if such a bound is not well-defined.
Example
julia> upper_bound(x[1])
0.0
InfiniteOpt.has_supports
— Methodhas_supports(pref::DependentParameterRef)::Bool
Return true if pref
has supports or false otherwise.
Example
julia> has_supports(x[1])
true
InfiniteOpt.has_supports
— Methodhas_supports(prefs::AbstractArray{<:DependentParameterRef})::Bool
Return true if prefs
have supports or false otherwise. Errors if not all of the infinite dependent parameters are from the same object.
Example
julia> has_supports(x)
true
InfiniteOpt.num_supports
— Methodnum_supports(pref::DependentParameterRef;
[label::Type{<:AbstractSupportLabel} = PublicLabel])::Int
Return the number of support points associated with a single dependent infinite parameter pref
. Specify a subset of supports via label
to only count the supports with label
. By default only the amount of public supports are given, but the full amount is obtained via label == All
.
Example
julia> num_supports(x[1])
2
julia> num_supports(x[1], label = MCSample)
0
InfiniteOpt.num_supports
— Methodnum_supports(prefs::AbstractArray{<:DependentParameterRef};
[label::Type{<:AbstractSupportLabel} = PublicLabel])::Int
Return the number of support points associated with dependent infinite parameters prefs
. Errors if not all from the same underlying object. Specify a subset of supports via label
to only count the supports with label
. By default only the amount of public supports are given, but the full amount is obtained via label == All
.
Example
julia> num_supports(x)
2
InfiniteOpt.supports
— Methodsupports(pref::DependentParameterRef;
[label::Type{<:AbstractSupportLabel} = PublicLabel])::Vector{Float64}
Return the support points associated with pref
. A subset of supports can be returned via label
to return just the supports associated with label
. By default only the public supports are given, but the full set is obtained via label == All
.
Example
julia> supports(x[1])
2-element Array{Float64,1}:
0.0
1.0
InfiniteOpt.supports
— Methodsupports(prefs::AbstractArray{<:DependentParameterRef};
[label::Type{<:AbstractSupportLabel} = PublicLabel]
)::Union{Vector{<:AbstractArray{<:Real}}, Array{Float64, 2}}
Return the support points associated with prefs
. Errors if not all of the infinite dependent parameters are from the same object. This will return a matrix if prefs
is Vector
, otherwise a vector of arrays is returned where each array is a support point matching the format of prefs
. A subset of supports can be returned via label
to return just the supports associated with label
. By default only the public supports are given, but the full set is obtained via label == All
.
Example
julia> supports(x) # columns are supports
2×2 Array{Float64,2}:
0.0 1.0
0.0 1.0
InfiniteOpt.significant_digits
— Methodsignificant_digits(pref::DependentParameterRef)::Int
Return the number of significant digits enforced on the supports of pref
.
Example
julia> significant_digits(x[1])
12
InfiniteOpt.derivative_method
— Methodderivative_method(pref::DependentParameterRef)::NonGenerativeDerivativeMethod
Returns the numerical derivative evaluation method employed with pref
when it is used as an operator parameter in a derivative.
Example
julia> derivative_method(pref)
FiniteDifference
InfiniteOpt.is_used
— Methodis_used(pref::DependentParameterRef)::Bool
Return a Bool
indicating if the dependent infinite parameter pref
is used in the model.
Example
julia> is_used(pref)
true
InfiniteOpt.used_by_infinite_variable
— Methodused_by_infinite_variable(pref::DependentParameterRef)::Bool
Return a Bool
indicating if the dependent infinite parameter pref
is used by an infinite variable.
Example
julia> used_by_infinite_variable(pref)
true
InfiniteOpt.used_by_parameter_function
— Methodused_by_parameter_function(pref::DependentParameterRef)::Bool
Return a Bool
indicating if the dependent infinite parameter pref
is used by an infinite parameter function.
Example
julia> used_by_parameter_function(pref)
true
InfiniteOpt.used_by_measure
— Methodused_by_measure(pref::DependentParameterRef)::Bool
Return a Bool
indicating if the dependent infinite parameter pref
is used by a measure.
Example
julia> used_by_measure(pref)
true
InfiniteOpt.used_by_constraint
— Methodused_by_constraint(pref::DependentParameterRef)::Bool
Return a Bool
indicating if the dependent infinite parameter pref
is used by a constraint.
Example
julia> used_by_constraint(pref)
false
Modification
General
InfiniteOpt.fill_in_supports!
— Methodfill_in_supports!(model::InfiniteModel; [num_supports::Int = DefaultNumSupports,
modify::Bool = true])::Nothing
Automatically generate support points for all infinite parameters in model. This calls fill_in_supports!
for each parameter in the model. See fill_in_supports!
for more information. Errors if one of the infinite domain types is unrecognized. Note that no supports will be added to a particular parameter if it already has some and modify = false
.
Example
julia> fill_in_supports!(model, num_supports = 4)
julia> supports(t)
4-element Array{Float64,1}:
0.0
0.333
0.667
1.0
Independent Parameters
JuMP.set_name
— MethodJuMP.set_name(pref::ScalarParameterRef, name::String)
Extend the JuMP.set_name
function to accomodate infinite parameters. Set a new base name to be associated with pref
.
Example
julia> set_name(t, "time")
julia> name(t)
"time"
InfiniteOpt.set_infinite_domain
— Methodset_infinite_domain(pref::IndependentParameterRef,
domain::InfiniteScalarDomain)::Nothing
Reset the infinite domain of pref
with another InfiniteScalarDomain
. An error will be thrown if pref
is being used by some measure.
Example
julia> set_infinite_domain(t, IntervalDomain(0, 2))
julia> infinite_domain(t)
[0, 2]
JuMP.set_lower_bound
— MethodJuMP.set_lower_bound(pref::IndependentParameterRef, lower::Real)::Nothing
Extend the JuMP.set_lower_bound
function to accomodate infinite parameters. Updates the infinite domain lower bound if such an operation is supported. Set extensions that seek to employ this should extend JuMP.set_lower_bound(domain::NewType, lower::Number)
.
Example
julia> set_lower_bound(t, -1)
julia> lower_bound(t)
-1.0
JuMP.set_upper_bound
— MethodJuMP.set_upper_bound(pref::IndependentParameterRef, lower::Real)::Nothing
Extend the JuMP.set_upper_bound
function to accomodate infinite parameters. Updates the infinite domain upper bound if and only if it is an IntervalDomain. Errors otherwise. Extensions with user-defined infinite domains should extend JuMP.set_upper_bound(domain::NewType, upper::Number)
if appropriate.
Example
julia> set_upper_bound(t, 2)
julia> upper_bound(t)
2.0
InfiniteOpt.add_supports
— Methodadd_supports(pref::IndependentParameterRef,
supports::Union{Real, Vector{<:Real}};
[label::Type{<:AbstractSupportLabel} = UserDefined])::Nothing
Add additional support points for pref
with identifying label label
.
Example
julia> add_supports(t, 0.5)
julia> supports(t)
3-element Array{Float64,1}:
0.0
0.5
1.0
julia> add_supports(t, [0.25, 1])
julia> supports(t)
4-element Array{Float64,1}:
0.0
0.25
0.5
1.0
InfiniteOpt.set_supports
— Methodset_supports(pref::IndependentParameterRef, supports::Vector{<:Real};
[force::Bool = false,
label::Type{<:AbstractSupportLabel} = UserDefined]
)::Nothing
Specify the support points for pref
. Errors if the supports violate the bounds associated with the infinite domain. Warns if the points are not unique. If force
this will overwrite exisiting supports otherwise it will error if there are existing supports.
Example
julia> set_supports(t, [0, 1])
julia> supports(t)
2-element Array{Int64,1}:
0
1
InfiniteOpt.delete_supports
— Methoddelete_supports(pref::IndependentParameterRef;
[label::Type{<:AbstractSupportLabel} = All])::Nothing
Delete the support points for pref
. If label != All
then delete label
and any supports that solely depend on it.
Example
julia> delete_supports(t)
julia> supports(t)
ERROR: Parameter t does not have supports.
InfiniteOpt.generate_and_add_supports!
— Methodgenerate_and_add_supports!(pref::IndependentParameterRef,
domain::AbstractInfiniteDomain,
[method::Type{<:AbstractSupportLabel}];
[num_supports::Int = DefaultNumSupports])::Nothing
Generate supports for independent parameter pref
via generate_support_values
and add them to pref
. This is intended as an extendable internal method for fill_in_supports!
. Most extensions that empoy user-defined infinite domains can typically enable this by extending generate_support_values
. Errors if the infinite domain type is not recognized.
InfiniteOpt.fill_in_supports!
— Methodfill_in_supports!(pref::IndependentParameterRef;
[num_supports::Int = DefaultNumSupports])::Nothing
Automatically generate support points for a particular independent parameter pref
. Generating num_supports
for the parameter. The supports are generated uniformly if the underlying infinite domain is an IntervalDomain
or they are generating randomly accordingly to the distribution if the domain is a UniDistributionDomain
. Will add nothing if there are supports and modify = false
. Extensions that use user defined domain types should extend generate_and_add_supports!
and/or generate_support_values
as needed. Errors if the infinite domain type is not recognized.
Example
julia> fill_in_supports!(x, num_supports = 4)
julia> supports(x)
4-element Array{Number,1}:
0.0
0.333
0.667
1.0
JuMP.delete
— MethodJuMP.delete(model::InfiniteModel, pref::ScalarParameterRef)::Nothing
Extend JuMP.delete
to delete scalar parameters and their dependencies. All variables, constraints, and measure functions that depend on pref
are updated to exclude it. Errors if the parameter is used by an infinite variable or if it is contained in an AbstractMeasureData
DataType that is employed by a measure since the measure becomes invalid otherwise. Thus, measures that contain this dependency must be deleted first. Note that parameter_refs
needs to be extended to allow deletion of parameters when custom AbstractMeasureData
datatypes are used.
Example
julia> delete(model, x)
Dependent Parameters
JuMP.set_name
— MethodJuMP.set_name(pref::DependentParameterRef, name::String)::Nothing
Extend JuMP.set_name
to set names of dependent infinite parameters.
Example
julia> set_name(vref, "par_name")
julia> name(vref)
"para_name"
InfiniteOpt.set_infinite_domain
— Methodset_infinite_domain(pref::DependentParameterRef,
domain::InfiniteScalarDomain)::Nothing
Specify the scalar infinite domain of the dependent infinite parameter pref
to domain
if pref
is part of a CollectionDomain
, otherwise an error is thrown. Note this will reset/delete all the supports contained in the underlying DependentParameters
object. Also, errors if pref
is used by a measure.
Example
julia> set_infinite_domain(x[1], IntervalDomain(0, 2))
julia> infinite_domain(x[1])
[0, 2]
InfiniteOpt.set_infinite_domain
— Methodset_infinite_domain(prefs::AbstractArray{<:DependentParameterRef},
domain::InfiniteArrayDomain)::Nothing
Specify the multi-dimensional infinite domain of the dependent infinite parameters prefs
to domain
. Note this will reset/delete all the supports contained in the underlying DependentParameters
object. This will error if the not all of the dependent infinite parameters are included, if any of them are used by measures.
Example
julia> set_infinite_domain(x, CollectionDomain([IntervalDomain(0, 1), IntervalDomain(0, 2)]))
JuMP.set_lower_bound
— MethodJuMP.set_lower_bound(pref::DependentParameterRef, lower::Real)::Nothing
Extend the JuMP.set_lower_bound
function to accomodate a single dependent infinite parameter. Updates the infinite domain lower bound if such an operation is supported. Infinite scalar domain extensions that seek to employ this should extend JuMP.set_lower_bound(domain::NewType, lower::Number)
. This will call set_infinite_domain
and will error if this is not well-defined. Note that existing supports will be deleted.
Example
julia> set_lower_bound(t, -1)
julia> lower_bound(t)
-1.0
JuMP.set_upper_bound
— MethodJuMP.set_upper_bound(pref::DependentParameterRef, upper::Real)::Nothing
Extend the JuMP.set_upper_bound
function to accomodate a single dependent infinite parameter. Updates the infinite domain upper bound if such an operation is supported. Infinite scalar domain extensions that seek to employ this should extend JuMP.set_upper_bound(domain::NewType, upper::Number)
. This will call set_infinite_domain
and will error if this is not well-defined. Note that existing supports will be deleted.
Example
julia> set_upper_bound(t, -1)
julia> upper_bound(t)
-1.0
InfiniteOpt.add_supports
— Methodadd_supports(prefs::AbstractArray{<:DependentParameterRef},
supports::Vector{<:AbstractArray{<:Real}};
[label::Type{<:AbstractSupportLabel} = UserDefined])::Nothing
Add additional support points for prefs
. Errors if the supports violate the domain of the infinite domain, if the dimensions don't match up properly, if prefs
and supports
have different indices, or not all of the prefs
are from the same dependent infinite parameter container.
add_supports(prefs::Vector{DependentParameterRef},
supports::Array{<:Real, 2};
[label::Type{<:AbstractSupportLabel} = UserDefined])::Nothing
Specify the supports for a vector prefs
of dependent infinite parameters. Here rows of supports
correspond to prefs
and the columns correspond to the supports. This is more efficient than the above method and will error for the same reasons.
Example
julia> add_supports(x, [[1], [1]])
julia> supports(x)
2×2 Array{Float64,2}:
0.0 1.0
0.0 1.0
julia> add_supports(x, ones(2, 1) * 0.5)
julia> supports(t)
2×3 Array{Float64,2}:
0.0 1.0 0.5
0.0 1.0 0.5
InfiniteOpt.set_supports
— Methodset_supports(prefs::AbstractArray{<:DependentParameterRef},
supports::Vector{<:AbstractArray{<:Real}};
[force::Bool = false,
label::Type{<:AbstractSupportLabel} = UserDefined])::Nothing
Specify the support points for prefs
. Errors if the supports violate the domain of the infinite domain, if the dimensions don't match up properly, if prefs
and supports
have different indices, not all of the prefs
are from the same dependent infinite parameter container, there are existing supports and force = false
. Note that it is strongly preferred to use add_supports
if possible to avoid destroying measure dependencies.
set_supports(prefs::Vector{DependentParameterRef},
supports::Array{<:Real, 2};
[force::Bool = false,
label::Type{<:AbstractSupportLabel} = UserDefined])::Nothing
Specify the supports for a vector prefs
of dependent infinite parameters. Here rows of supports
correspond to prefs
and the columns correspond to the supports. This is more efficient than the above method and will error for the same reasons.
Example
julia> set_supports(y, [[0, 1], [0, 1]])
julia> set_supports(x, [0 1; 0 1])
julia> supports(x)
2×2 Array{Float64,2}:
0.0 1.0
0.0 1.0
InfiniteOpt.delete_supports
— Methoddelete_supports(prefs::AbstractArray{<:DependentParameterRef};
[label::Type{<:AbstractSupportLabel} = All])::Nothing
Delete the support points for prefs
. Errors if any of the parameters are used by a measure or if not all belong to the same set of dependent parameters. If label != All
then that label is removed along with any supports that solely contain that label.
Example
julia> delete_supports(w)
InfiniteOpt.generate_and_add_supports!
— Methodgenerate_and_add_supports!(prefs::AbstractArray{<:DependentParameterRef},
domain::InfiniteArrayDomain,
[method::Type{<:AbstractSupportLabel}];
[num_supports::Int = DefaultNumSupports])::Nothing
Generate supports for prefs
via generate_support_values
and add them to pref
. This is intended as an extendable internal method for fill_in_supports!
. Most extensions that employ user-defined infinite domains can typically enable this by extending generate_support_values
. However, in some cases it may be necessary to extend this when more complex operations need to take place then just adding supports to a set of infinite parameters. Errors if the infinite domain type is not recognized.
InfiniteOpt.fill_in_supports!
— Methodfill_in_supports!(prefs::AbstractArray{<:DependentParameterRef};
[num_supports::Int = DefaultNumSupports,
modify::Bool = true])::Nothing
Automatically generate support points for a container of dependent infinite parameters prefs
. Generating up to num_supports
for the parameters in accordance with generate_and_add_supports!
. Will add nothing if there are supports and modify = false
. Extensions that use user defined domain types should extend generate_and_add_supports!
and/or generate_support_values
as needed. Errors if the infinite domain type is not recognized.
Example
julia> fill_in_supports!(x, num_supports = 4)
julia> supports(x)
2×4 Array{Float64,2}:
0.0 0.333 0.667 1.0
0.0 0.333 0.667 1.0
JuMP.delete
— MethodJuMP.delete(model::InfiniteModel,
prefs::AbstractArray{<:DependentParameterRef})::Nothing
Extend JuMP.delete
to delete dependent infinite parameters and their dependencies. All variables, constraints, and measure functions that depend on prefs
are updated to exclude them. Errors if the parameters are contained in an AbstractMeasureData
datatype that is employed by a measure since the measure becomes invalid otherwise. Thus, measures that contain this dependency must be deleted first. Note that parameter_refs
needs to be extended to allow deletion of parameters when custom AbstractMeasureData
datatypes are used. Note that any dependent infinite variables will have their start values reset to the default via reset_start_value_function
.
Example
julia> print(model)
Min measure(g(t, x)*t + x) + z
Subject to
z ≥ 0.0
g(t, x) + z ≥ 42.0, ∀ t ∈ [0, 6], x[1] ∈ [-1, 1], x[2] ∈ [-1, 1]
g(0.5, x) = 0, x[1] ∈ [-1, 1], x[2] ∈ [-1, 1]
julia> delete(model, x)
julia> print(model)
Min measure(g(t)*t) + z
Subject to
g(t) + z ≥ 42.0, ∀ t ∈ [0, 6]
g(0.5) = 0
Generative Supports
InfiniteOpt.AbstractGenerativeInfo
— TypeAbstractGenerativeInfo
An abstract type for storing information about generating supports that are made based on existing supports as required by certain measures and/or derivatives that depend on a certain independent infinite parameter. Such as the case with internal collocation supports.
InfiniteOpt.NoGenerativeSupports
— TypeNoGenerativeSupports <: AbstractGenerativeInfo
A DataType
to signify that no generative supports will be generated for the measures and/or the derivatives. Has no fields.
InfiniteOpt.UniformGenerativeInfo
— TypeUniformGenerativeInfo <: AbstractGenerativeInfo
A DataType
for generative supports that will be generated in a uniform manner over finite elements (i.e., in between the existing supports). These generative supports are described by the support_basis
which lie in a nominal domain [0, 1]. The constructor is of the form:
UniformGenerativeInfo(support_basis::Vector{<:Real}, label::DataType,
[lb::Real = 0, ub::Real = 1])
where the support_basis
is defined over [lb
, ub
].
Fields
support_basis::Vector{Float64}
: The basis of generative supports defined in [0, 1] that will be transformed for each finite element.label::DataType
: The unique label to be given to each generative support.
InfiniteOpt.has_generative_supports
— Methodhas_generative_supports(pref::IndependentParameterRef)::Bool
Return whether generative supports have been added to pref
in accordance with its generative support info.
InfiniteOpt.support_label
— Methodsupport_label(info::AbstractGenerativeInfo)::DataType
Return the support label to be associated with generative supports produced in accordance with info
. This is intended an internal method that should be extended for user defined types of AbstractGenerativeInfo
.
InfiniteOpt.generative_support_info
— Methodgenerative_support_info(pref::IndependentParameterRef)::AbstractGenerativeInfo
Return the generative support information associated with pref
.
InfiniteOpt.make_generative_supports
— Functionmake_generative_supports(info::AbstractGenerativeInfo,
pref::IndependentParameterRef,
existing_supps::Vector{Float64}
)::Vector{Float64}
Generate the generative supports for pref
in accordance with info
and the existing_supps
that pref
has. The returned supports should not include existing_supps
. This is intended as internal method to enable add_generative_supports
and should be extended for any user defined info
types that are created to enable new measure and/or derivative evaluation techniques that require the creation of generative supports.
InfiniteOpt.add_generative_supports
— Functionadd_generative_supports(pref::IndependentParameterRef)::Nothing
Create generative supports for pref
if needed in accordance with its generative support info using make_generative_supports
and add them to pref
. This is intended as an internal function, but can be useful user defined optimizer model extensions that utlize our support system.
add_generative_supports(prefs; [kwargs...])
Define add_generative_supports
for general variable references. It relies on add_generative_supports
being defined for the underlying DispatchVariableRef
, otherwise an ArgumentError
is thrown. See the underlying docstrings for more information. Note that this is a auto generated wrapper and the underlying method may or may not use kwargs
.