Constraints
A technical manual for constraints in InfiniteOpt
. See the respective guide for more information.
Definition
Note that constraints are defined principally with JuMP.@constraint
which originates from JuMP.jl
. Below we show build methods for DomainRestrictedConstraint
s, but any JuMP.AbstractConstraint
can be used.
InfiniteOpt.DomainRestrictions
— TypeDomainRestrictions{P <: GeneralVariableRef}
A DataType
for storing interval domains that constrain particular infinite parameters to a subdomain relative to their full domain. This is used to define subdomains of DomainRestrictedConstraint
s. Note that the GeneralVariableRef must pertain to infinite parameters.
The constructor syntax is
DomainRestrictions(restrictions...)
where each argument of restrictions
is one of the following forms:
pref => value
pref => [lb, ub]
pref => IntervalDomain(lb, ub)
prefs => value
prefs => [lb, ub]
prefs => IntervalDomain(lb, ub)
.
Note that pref
and prefs
must correspond to infinite parameters.
Fields
intervals::Dict{GeneralVariableRef, IntervalDomain}
: A dictionary of interval bounds on infinite parameters.
JuMP.build_constraint
— MethodJuMP.build_constraint(_error::Function, func, set,
restrictions::DomainRestrictions{GeneralVariableRef}
)::DomainRestrictedConstraint
Extend JuMP.buid_constraint
to handle including restrictions
to its inherit infinite parameter domains in addition to the traditional func
in set
setup. This returns a DomainRestrictedConstraint
that can then be added via JuMP.add_constraint
. Errors if the restrictions are incompadible with infinite parameter domains.
Example
julia> restrictions = DomainRestrictions(t => 0)
Subdomain restrictions (1): t = 0
julia> con = build_constraint(error, y + 2, MOI.LessThan(0.0), restrictions);
InfiniteOpt.DomainRestrictedConstraint
— TypeDomainRestrictedConstraint{C <: JuMP.AbstractConstraint,
P <: GeneralVariableRef
} <: JuMP.AbstractConstraint
A DataType
for creating a constraint with enforced DomainRestrictions
. For example this may pertain to a boundary condition.
Fields
constraint::C
: The optimization constraint.restrictions::DomainRestrictions{P}
: The restrictions that determine the sub-domain of the constraint.
JuMP.add_constraint
— MethodJuMP.add_constraint(model::InfiniteModel, c::JuMP.AbstractConstraint,
[name::String = ""])::InfOptConstraintRef
Extend JuMP.add_constraint
to add a constraint c
to an infinite model model
with name name
. Returns an appropriate constraint reference whose type depends on what variables are used to define the constraint. Errors if any variables do not belong to model
. This is primarily used as an internal method for the constraint macros.
Example
julia> @infinite_parameter(model, t in [0, 10]);
julia> @variable(model, g, Infinite(t));
julia> @variable(model, x);
julia> constr = build_constraint(error, g + x, MOI.EqualTo(42));
julia> cref = add_constraint(model, constr, "name")
name : g(t) + x = 42.0, ∀ t ∈ [0, 10]
InfiniteOpt.ConstraintData
— TypeConstraintData{C <: JuMP.AbstractConstraint} <: AbstractDataObject
A mutable DataType
for storing constraints and their data.
Fields
constraint::C
: The constraint.object_nums::Vector{Int}
: The object numbers of the parameter objects that the constraint depends on.name::String
: The name used for printing.measure_indices::Vector{MeasureIndex}
: Indices of dependent measures.is_info_constraint::Bool
: Is this is constraint based on variable info (e.g., lower bound)
InfiniteOpt.InfOptConstraintIndex
— TypeInOptConstraintIndex <: ObjectIndex
A DataType
for storing the index of a constraint.
Fields
value::Int64
: The index value.
InfiniteOpt.InfOptConstraintRef
— TypeInfOptConstraintRef
A DataType
for constraints that are in InfiniteModel
s
Fields
model::InfiniteModel
: Infinite model.index::InfOptConstraintIndex
: Index of the constraint in model.
Queries
JuMP.owner_model
— MethodJuMP.owner_model(cref::InfOptConstraintRef)::InfiniteModel
Extend JuMP.owner_model
to return the infinite model associated with cref
.
Example
julia> model = owner_model(cref)
An InfiniteOpt Model
Minimization problem with:
Finite Parameters: 0
Infinite Parameters: 3
Variables: 3
Derivatives: 0
Measures: 0
Objective function type: GeneralVariableRef
`GenericAffExpr{Float64,GeneralVariableRef}`-in-`MathOptInterface.EqualTo{Float64}`: 1 constraint
Names registered in the model: g, t, h, x
Optimizer model backend information:
Model mode: AUTOMATIC
CachingOptimizer state: NO_OPTIMIZER
Solver name: No optimizer attached.
JuMP.index
— MethodJuMP.index(cref::InfOptConstraintRef)::InfOptConstraintIndex
Extend JuMP.index
to return the index of an InfiniteOpt
constraint cref
.
Example
julia> index(cref)
InfOptConstraintIndex(2)
JuMP.constraint_object
— MethodJuMP.constraint_object(cref::InfOptConstraintRef)::JuMP.AbstractConstraint
Extend JuMP.constraint_object
to return the constraint object associated with cref
.
Example
julia> @infinite_parameter(model, t in [0, 10]);
julia> @variable(model, x <= 1);
julia> cref = UpperBoundRef(x);
julia> obj = constraint_object(cref)
ScalarConstraint{GeneralVariableRef,MathOptInterface.LessThan{Float64}}(x,
MathOptInterface.LessThan{Float64}(1.0))
JuMP.name
— MethodJuMP.name(cref::InfOptConstraintRef)::String
Extend JuMP.name
to return the name of an InfiniteOpt
constraint.
Example
julia> name(cref)
"constr_name"
JuMP.constraint_by_name
— MethodJuMP.constraint_by_name(model::InfiniteModel,
name::String)::Union{InfOptConstraintRef, Nothing}
Extend JuMP.constraint_by_name
to return the constraint reference associated with name
if one exists or returns nothing. Errors if more than one constraint uses the same name.
Example
julia> constraint_by_name(model, "constr_name")
constr_name : x + pt = 3.0
JuMP.list_of_constraint_types
— MethodJuMP.list_of_constraint_types(model::InfiniteModel)::Vector{Tuple{DataType, DataType}}
Extend JuMP.list_of_constraint_types
to return a list of tuples that contain all the used combinations of function types and set types in the model.
Example
julia> all_constraints(model)
3-element Array{Tuple{DataType,DataType},1}:
(GeneralVariableRef, MathOptInterface.LessThan{Float64})
(GeneralVariableRef, MathOptInterface.GreaterThan{Float64})
(GeneralVariableRef, MathOptInterface.Integer)
JuMP.num_constraints
— MethodJuMP.num_constraints(model::InfiniteModel, [function_type], [set_type])::Int
Extend JuMP.num_constraints
to return the number of constraints with a partiuclar function type and set type.
Example
julia> num_constraints(model, FiniteVariableRef, MOI.LessThan)
1
julia> num_constraints(model, FiniteVariableRef)
3
julia> num_constraints(model, MOI.LessThan)
2
julia> num_constraints(model)
4
JuMP.all_constraints
— MethodJuMP.all_constraints(model::InfiniteModel, [function_type], [set_type])::Vector{InfOptConstraintRef}
Extend JuMP.all_constraints
to return a list of all the constraints with a particular function type and set type.
Example
julia> all_constraints(model, GeneralVariableRef, MOI.LessThan)
1-element Array{InfOptConstraintRef,1}:
x ≤ 1.0
julia> all_constraints(model, GeneralVariableRef)
3-element Array{InfOptConstraintRef,1}:
x ≥ 0.0
x ≤ 3.0
x integer
julia> all_constraints(model, MOI.GreaterThan)
3-element Array{InfOptConstraintRef,1}:
x ≥ 0.0
g(t) ≥ 0.0, ∀ t ∈ [0, 6]
g(0.5) ≥ 0.0
julia> all_constraints(model)
5-element Array{InfOptConstraintRef,1}:
x ≥ 0.0
x ≤ 3.0
x integer
g(t) ≥ 0.0, ∀ t ∈ [0, 6]
g(0.5) ≥ 0.0
JuMP.is_valid
— MethodJuMP.is_valid(model::InfiniteModel, cref::InfOptConstraintRef)::Bool
Extend JuMP.is_valid
to return Bool
whether an InfiniteOpt
constraint reference is valid.
Example
julia> is_valid(model, cref)
true
InfiniteOpt.parameter_refs
— Methodparameter_refs(cref::InfOptConstraintRef)::Tuple
Return the tuple of infinite parameter references that determine the infinite dependencies of cref
.
Example
julia> parameter_refs(cref)
(t,)
InfiniteOpt.has_domain_restrictions
— Functionhas_domain_restrictions(cref::InfOptConstraintRef)::Bool
Return a Bool
indicating if cref
is limited to a sub-domain as defined by a DomainRestrictions
object.
Example
julia> has_domain_restrictions(cref)
true
InfiniteOpt.domain_restrictions
— Functiondomain_restrictions(cref::InfOptConstraintRef)::DomainRestrictions{GeneralVariableRef}
Return the DomainRestrictions
object associated with the constraint cref
.
Example
julia> domain_restrictions(cref)
Subdomain restrictions (1): t ∈ [0, 2]
JuMP.normalized_rhs
— MethodJuMP.normalized_rhs(cref::InfOptConstraintRef)::Float64
Return the right-hand side term of cref
after JuMP has converted the constraint into its normalized form.
JuMP.normalized_coefficient
— MethodJuMP.normalized_coefficient(cref::InfOptConstraintRef,
variable::GeneralVariableRef)::Float64
Return the coefficient associated with variable
in constraint
after JuMP has normalized the constraint into its standard form.
Modification
JuMP.set_name
— MethodJuMP.set_name(cref::InfOptConstraintRef, name::String)::Nothing
Extend JuMP.set_name
to specify the name of a constraint cref
.
Example
julia> set_name(cref, "new_name")
julia> name(cref)
"new_name"
InfiniteOpt.set_domain_restrictions
— Functionset_domain_restrictions(cref::InfOptConstraintRef,
restrictions:DomainRestrictions{GeneralVariableRef};
[force::Bool = false])::Nothing
Specify a new DomainRestrictions
object restrictions
for the constraint cref
. Errors if cref
already has restrictions and force = false
. Where possible it is recommended to use add_domain_restrictions
instead.
Example
julia> set_domain_restrictions(cref, DomainRestrictions(t => [0, 2]))
julia> domain_restrictions(cref)
Subdomain restrictions (1): t ∈ [0, 2]
InfiniteOpt.add_domain_restrictions
— Functionadd_domain_restrictions(cref::InfOptConstraintRef,
new_restrictions::DomainRestrictions{GeneralVariableRef}
)::Nothing
Add additional domain restrictions to cref
such that it is defined over the sub-domain based on pref
from lower
to upper
.
julia> add_domain_restrictions(cref, DomainRestrictions(t => [0, 2]))
julia> domain_restrictions(cref)
Subdomain restrictions (1): t ∈ [0, 2]
InfiniteOpt.delete_domain_restrictions
— Functiondelete_domain_restrictions(cref::InfOptConstraintRef)::Nothing
Delete all the domain restrictions of the constraint cref
. Note any restrictions that are needed for finite variables inside in cref
will be unaffected.
Example
julia> @constraint(model, c1, y <= 42, DomainRestrictions(x => 0))
c1 : y(x) ≤ 42, ∀ x[1] = 0, x[2] = 0
julia> delete_domain_restrictions(c1)
julia> c1
c1 : y(x) ≤ 42, ∀ x[1] ∈ [-1, 1], x[2] ∈ [-1, 1]
JuMP.set_normalized_rhs
— MethodJuMP.set_normalized_rhs(cref::InfOptConstraintRef, value::Real)::Nothing
Set the right-hand side term of constraint
to value
. Note that prior to this step, JuMP will aggregate all constant terms onto the right-hand side of the constraint. For example, given a constraint 2x + 1 <= 2
, set_normalized_rhs(con, 4)
will create the constraint 2x <= 4
, not 2x + 1 <= 4
.
julia> @constraint(model, con, 2x + 1 <= 2)
con : 2 x ≤ 1.0
julia> set_normalized_rhs(con, 4)
julia> con
con : 2 x ≤ 4.0
JuMP.add_to_function_constant
— MethodJuMP.add_to_function_constant(cref::InfOptConstraintRef, value::Real)::Nothing
Add value
to the function constant term. Note that for scalar constraints, JuMP will aggregate all constant terms onto the right-hand side of the constraint so instead of modifying the function, the set will be translated by -value
. For example, given a constraint 2x <= 3
, add_to_function_constant(c, 4)
will modify it to 2x <= -1
. ```
JuMP.set_normalized_coefficient
— MethodJuMP.set_normalized_coefficient(cref::InfOptConstraintRef,
variable::GeneralVariableRef,
value::Real)::Nothing
Set the coefficient of variable
in the constraint constraint
to value
. Note that prior to this step, JuMP will aggregate multiple terms containing the same variable. For example, given a constraint 2x + 3x <= 2
, set_normalized_coefficient(con, x, 4)
will create the constraint 4x <= 2
.
julia> con
con : 5 x ≤ 2.0
julia> set_normalized_coefficient(con, x, 4)
julia> con
con : 4 x ≤ 2.0
JuMP.delete
— MethodJuMP.delete(model::InfiniteModel, cref::InfOptConstraintRef)::Nothing
Extend JuMP.delete
to delete an InfiniteOpt
constraint and all associated information. Errors if cref
is invalid.
Example
julia> print(model)
Min measure(g(t)*t) + z
Subject to
z ≥ 0.0
g(t) + z ≥ 42.0, ∀ t ∈ [0, 6]
julia> delete(model, cref)
julia> print(model)
Min measure(g(t)*t) + z
Subject to
z ≥ 0.0